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Abstract—The aim of this paper is 1o introduce a new system of
Wiener - Hopf equation (SWHE) defined on a real Hilbert si;ace. We
study the system of nonlinear variational inequality problem on real
Hilbert space. we consider a system of new fractional order Wiener-
Hopf" dvnamical sysiem (SFOWHDS) Jfor system of nonlinear
variational! inequalities problem (SNVIP) using the Wiener-Hopf
equations iechnigue. Moreover, the existence of a solution to such a
Jractional order Wiener -Hopf dyvnamical system is considered and
there is demonstrated a systemic solution to such a dynamical systen.
We show that the solution of system of fractional order Wiener-Hopf
dvnamical system is exist and unique. This type dvnamical system is
interesting (o study because it can be apply in the various real world
probiems.

Keywords: Variational inequality problem, fractional derivative,

Wiener- Hope equarion, projected dynamical system, Lipschitz

conrinuous mapping, non-expansive mapping, exponentially stability.
INTRODUCTION

Integer order differential and integral equations (IDEs) make
up the majority of the mathematical models. Since a few
decades ago, non-integer order differential equations (FDEs)
have allowed for the more accurate and precise formulation of
actual events. Many researchers have grown passionate in the
study of fractional differential system dynamics in recent
years, and many interesting and significant outcomes, which
include factional-order differential systems having chaos have
been reported. Recently, For the purpose of learning to use
fractional calculus, Nonlinear system stability analysis has
been enhanced. The use of fractional calculus to model
nonlinear systems served as an inspiration, these studies used
the integer-order stabilisation approach.

The direct approach of fractional Lyapunov are suggested by
the author in an effort to extend our understanding of
fractional calculus and system theory. The use of fractional
calculus in reality is made practical and inexpensive by
quicker processing and less expensive memory. [Chen, [8]].
There are various area like informatics and material, control of

fractional order dynamical system. In some cases, a fractional-
order controller for a non-integer order system may perform
better in terms of transient response than a traditional integer-
order controller. Modern calculus is the generalization of
classical integer-order calculus. Important uses in the sciences
of mechanics, viscoelasticity, signal processing, economics,
optimization, oceanography, bacteria that randomly move
through fractal materials in search of food, neurons modelling,
chaotic systems and others as well. It is significant to highlight
that fractional differential systems can be used to explain a
wide range of physical phenomena that include memory and
inherited characteristics. For more read, we go to references

(91- [12].

In 2014, Zeng at.al. [14] studies at a class of global non-
integer order projective dynamical systems and demonstrating
the existence and originality of this kind of system's solution.
With regard to these dynamical systems, it is possible to
establish whether the equilibrium point exists and with the

suitable conditions, its @-exponential stability.

Stampacchia initially proposed the variational inequality
problem in 1964 [1], whose definition is as below:

Let C be a non-empty subset of Hilbert space H which is
closed and convex and let consider nonlinear mapping T from
subset C to H. The typical VIP is then introduced in the
manner described below:

(T(x*),x —x*) = 0,forallx € C.(1.1)

Variational inequality problem (VIP) is the name givgn to
equation (1.1) and indicated by VI(C,T) and the co.llecuon of
all solution of (1.1) is indicated by Q(VI(C,T)), that is,

QVI(C,T)) = {x* € C:(T(x*),x — x*) = 0,Vx € C}.

The collection of all T's fixed point is 'mdicged by Fix(T). It
is well know results that VIP (L.1), which is outlined as the
fixed point problem (FPP) that follows:

-
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ndxTinCsuch thatx® = Pe(! — u7)x". (1.2)

"where P is refer best approximation operator. from Milbert
¥ space H to C. '\\hcr:' u >0 is non-negative constant and |
stand for mapping from H on to H, which is identity. If the
mapping T is n-strongly monotone and x-Lipschitzian, then
the operator Pe(l — uT) is a contraction on subset C if 0 <
p < 2n/Kd. The Banach Contraction principle in this situation
ensures that equation (1.1) has exactly one solution x* in C
Sequence is described as -

Xn+l — P‘.'U’ ”-“T)Invvn €N, (1.3)

converges x° in C is known as The Picard iteration method's.

This process is also called projection gradient method (PGM) t

see [2] ). Stampacchia studied the problem of variational

inequality which widely use in ficld of mechanics. Moreover

variational inequality is a one of the power full tool to

studying different problem which are related to different

branches of pure and applied mathematics. It is very useful in
field of differential equation mechanics, wansportation
problem. operation research, conwol problem, equilibrium
problem, fuzzy controls system and networking related
problem. many authors use the concept of projection gradient
method (PGM) in different ways, (see [3] [15] [16] [17]). This
all technique are used in diverse area of science and being
productive and innovative. This tech- nique are motivate to
generalized the problem and extends the concept of variational
inequality and convex optimization problem.

In 2001, Verma [17] presented the generalized variational
inequality problem system, which studied as below:

Let T: H — H be the operator be nonlinear and C be a convex
and closed subset of Hilbert space H that is not empty, to find
x*,y* € C,such that

(pT(x)+y" —x",x—y") =0forallx €C,

{nT) +x" =y x—x") = 0foralix e ¢. I

here p, n > 0 be constant. In 2001. Verma [17] Some
algorithmic methods involving converges analysis for roughly
addressing the VIP has been proposed. Convex optimisation
problems and various other linear and nonlinear variational
inequality problems are resolved as well using the projected
dynamical system (for more information, see [18, 20]). In
1993, D. Zhang and A. Nagumey [21] introduce the
Dynamical system and Variational inequality problem both
and further in 1996 Further they studied about Projected
dynamical system and VIP and provide some important

results.

Noor [24] investigated the fixed point formulation in 2003 for
Evaluation of the differential equation for quasi type VIP is
the goal. Numerous dynamical systems recognised and
proposed by Dupuis and Nagurney [21] are included in this
dynamical system and Friesz et al. [23].

tion for System of Fracti or Wi
) Q ctional Order W iener-Hope Dynanncal System and System of Nonhnear Vanational Inequality Problem

several authors, who have written in ;
consequence of their thorough investigation. (see 24

[28] [20] and the references therein).

On the other hand, In 1991, P. Shi [16] introduced the Wiener-
Hopf equation and In 1992, Robinson [35] aiso studied
Wiener-Hopf equation independently and using the projection
technique. Wiener - Hope equation define as follows:

71

nonempty convex and compact set, evolutionary projected
dynamical systems, and variational inequality problem were
explored. and they demonstrated the sotution 10 this sort of

problem

3 : - . £
The topic of dynamical systems has drawn the interest oi

these publications as a
{26}

Consider no-void, closed and convex subset C of real H'\\t?en
space H and T be a nonlinear operator from C to H, We view
that problem as finding x € H such that

Qcx + pTPcx = 0,(1.5)

where p > 0 be constant and Q¢ =1 — P¢ substantiate the
Wiener-Hope equation's equality with the variational
inequalities. This show that solution of Wiener-Hope eguation
and solution of variational inequality problem can obtain if
one of them exist and also unique. In 1993, Noor [36] show
that generalized Wiener - Hope equation is equivalent to the
variational inequity problem. In 2002, Noor [38] established
the Wiener-Hopf equations method to analyse a dynamical
system for variational inequality and to demonstrate the
dynamical system's global asymptotic stability. The Wiener -
Hopf dynamical system has global asymptotically stability
property for pseudomonotone operator. In 2007, Noor and
Zhenyu Huang consider about the types of nonlinear and non-
expansive operators utilised by the new class of Wiener Hopf
equations.In 2010, Guanghui Gu and Yongfu Su [39] smdied
approximations of the Wiener-Hopf equation and generalised
variational inequality problem. In 2013, Changun Wu [40]
give theory to find the solution of Wiener - Hopf equation and
common solution of variational inequality and sand a
collection of non-expansive mapping's fixed points under
some condition.

Section 2 of this paper offers preliminary information, while
Section 3 contains the major fact which show the solution of
system of fractional order Wiener Hopf Projected dynamical
system are exist and unique. Section 4 contains conclusion of
this paper.

PRELIMINARIES
Firstly, we introduce some definition and lemma which are
useful.

Definition 2.1 A nonlinear operator T from C to H is called

(1) monotone if

Cojocaru et al. [4] in 2005, A Lipschitz continuous operator

on every Hilbert space of finite dimensional, for any

(Tx = Ty,x —y) = 0forallx,y €C,
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‘ n-strongly monotone if 3 5 > 0 such that
F(rx=Ty.x=y)y2nllx—y1? for alix,y € C,
¥ (3) f-Lipschitzian it 3 £ > 0 such that

NTx =Ty IS Blix =yl forally,y e A

(4) Non-expansive if 4

I1Tx =Ty ISHx —y || forallx, y €,

(5) Contraction if 3 k € [0, 1) s. t.

N7x =Ty ISk llx =y for allx,y € C.

.Lel X € H be a element not belong to subset ', A point z € C

is said to be a nearest point to x itd(x,C) =l x — y |I. The set

of all best approximations from x to C, which may or may not
be empty, is denoted by

Pe(x) ={y € C:d(x,C) =l x -y I} (2.1)

Consider the closed, convex, nonempty subset C of the set H.
Then, for any element x € H, there exist a unique best
approximation point (nearest point) P (x) of C such that
Ihx = Pe(x) ISl x =y |l forally € C.(2.2)

Note that P, is non-expansive from H onto C.
Lemma 2.1 [29] Given x € H, z € C, Then P.(x) = z if and
only if(x —z,z — y) = 0,for ally € C.

Proposition 2.1. [30] For any element x € C and any v € C the

Sl . Peo(x+6v)—x
o) =
IC'I(, ) = Jim ————,

exits and [[(x,v) = P-(v).
c
Definition 2.3. [30] Let H be a Hilbert space having any

possible dimensions and C € H be a closed, convex, and
nonempty subset. Let F be only one-valued mapping on C.

Then the differential equation

[1Gx(8), —F (x(2))), x(0) = xo € € (2.3)
C

dx(t) _

at

is said to be the F and C-related projected differential

equation. Then a solution to (2.3) is x(t) an absolutely
continuous function if x: [0,T) € R = H withx(¢t) € €,V t€

[0,T) and dx/dt = [](x(t), —F(x(t))), for almost every t €
c
[0, 7).

To corroborate our conclusions regarding the concepts of
stability in dynamic systems, the following definitions and

lemma are important.
Take note of the general differential equation

== f(x(8)), 24)

Definition 2.5 [31]
If f(x*) = 0 then x* point is referred to as the equilibrium
point of equation (2.4).

Omprakash Dewangan and Dildar Tandan

If for any £ > 0, 38 > 0 such that, for any x, € B(x",8) the
solution x(1) of the differential equation with initial point
¥(0) = x, exists and x(t) € B(x*, &) (2.5) for all t > 0, then
an equilibrium point x* of (2.4) called stable.

Lemma 2.2, [33] (Gronwall Lemma) Let u and v be
continuous real-valued functions with a domain {¢: t = t,} and
let a(t) = ay(jt — ty]), where monotone non-

decreasing function. If for all t = £,

(243 be

u(t) < a(t) + [t u(s)v(s)ds. (2.6)

- (AP
Then u(t) < a(t)e’ % (2.7

Lemma 2.3. [38] The VIP (1.1) have solution x* € C iff the
Wiener - Hopf equation (1.5) have unique solution u € H

where

x = Pcu, (2.8)

u=x—pTx.(2.9)

Using the equation (2.8) and (2.9), the Wiener - Hope equation
can be written as

x — pTx — Pc[x — pTx] + pTPc[x — pTx] = 0.(2.10)

Using above equivalence, Noor analyze a new system
associate with VIP (1.1) as follows:

% = AMPc[x — pTx] — pTPc[x — pTx] + pFx — x}

(2.11)

with x(ty) = xo and 4 is constant. Equation (2.11) is known
as Wiener - Hopf dynamical system.

Now, let's think about new dynamical system:

Dgu(t) = y{Pc(u(t) — pTu(t)) — pTPc(u(t) — pTu(t))
+pT(u(®) —u®)}

(2.12)

where a € (0,1) and v is a constant related to VIP (1.1). The
system (2.12) is called fractional order Wiener-Hopf
dynamical system (FOWHDS) associated with a VIP (L.1).

Definition 2.9. [45] Riemann-Liouville definition of non-
integer derivative of order a € R, of u(t) is described as:

1 ot .
Igu(t) = v f (b= TP ly(t)dr, t > to, (2.13)

where the Euler gamma function is denoted by I".
of non-integer

Definition 2.10. [45] The Caputo derivative of
derivative of order @€ R, of function u(t)€
C", ([to, +0], R) is given by
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- £) = In—au(n) t) =
‘D[ou( ) To ) )

> to,

t
[ (& === tu™(r)dr, ¢

' (2.19)
where n is an integer that is positive so that e € (n — 1,n)

Dcﬁr}iti(slx 2.12. [47] If the dynamical system's (2.12) any two

solutions u(t) and v(t) with distinct beginning po'n;iwby i Cvi]

v, satisfy the condition i
fu() —v@ ISy lug— v ll ey >t

then the system (
degree A.

2.12) is called a-exponentially stable with

Lemma2.4 [48] Let n€Z, and n—1<a<n e
C"[a, b), then E < %)

apnpa — Tl—luk(a)
[EDfu() = u®) — 3 2 (e - ).
k=0 K

In particular, if 0<a<1 and u(t) € C*{a,b].

19Dgu(t) = u(t) — u(a). (2.15)

Lemma 2.5. [47] Consider a function, which is a continuous
on [0, +0) and satisfies

DEu(t) < 6u(t), (2.16)

where 0 < @ < 1 and 6 is a constant. Then

u(t) < u(O).exp( )

Lemma 2.6. [47]- [49] Consider the system
DEu(t) = g(t, u(®)),t > to, (2.17)

with in
g: [to, ) X
continuous with regard to u(t), then 3 u
on [tg, ) X C .

Lemma?2.7. [49] With res
real values g( t, u(t) ), mentione

I 18 gt u()) 1< I8 1 gt u®) I,
Where @ > 0 and |||l indicates an arbitrary norm.

MAIN RESULTS
First we discuss about some important
Verma [17] present following lemma:

at®
r(a+1)

initial condition u(to). where 0 < a < land
C - H,CcH. If gt u) be locally Lipschitz
nique solution of (2.17)

pects to the continuous function with
d in (2.17), we have

Lemma and results: In 2001,
Lemma 3.1. [17] Solution of problem (L.4) are x* and y*© iff
y* = Pe(x" — pTx*)and x* = Pc(y* = nTy"). 3.1

where p, 7 be a positive constant.

The VIP (1.4), is simila
now being considered. Let
space H to itself and p,n >
be to identify x*, y* u*,v" in H such

r to the system of

0 be constant, We regard this
that
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= y*
x*

{QL(V.) + pTPe(u") 5 %°
Qc(u) +nTP(v?) =%

Where Qp = | — P¢ where 1 be an identity operator on H

32

In 2018, Narin Petrot and Jittiporn Tangkhawiwetkul {42} present the
Jemma, which show the equivalence of the problem (1.4) and (3.2)

- H be a continuous Lipschitz mapping

Lemma 3.2. [42] Let T H
£ VIP (1,4) as x”,y* € C Wt the

There are solutions to the system O

system of equation (3.2) has solutions x*,y',u', v €H, where
x* = Pc(v*)
N W (B33
(.V = Pc(u ! }
u* =x*—pTx’,
e 5 —qryn. B9

We suggest the following generalized system of fractional order

Wiener - Hope Dynamical system as follows:

{D?X(t) = A, (Pc(y =T () —nTPclx ~ pT(x)) +nT(y) — x}
DEy(t) = Ax{PcCx —pT(X)) ~ pTP:(y = nT () + pT ) = ¥
@3.5)

which x(to), ¥(to) in C, Ay, A, are constant with real positive tg.

Theorem 3.3. Let C be the real Hilbert space H's closed and convex

subset, which is non-empty. Consider a Lipschitz continuous
mapping T with constant B from H to H. Then, for each xg,¥0 € H,
generalized system of fractional order Wiener - Hope Dynamical
system (3.5) has the exactly one continuous solutions, x(t), and y(1)
with x(to) = Xo and y(to) = Yo OVer [to, ).

Proof. let A;, A, are two constants and the mapping G from cartesian

product H X H to itself, define as follow:
G(x,y) = (F(), RO,
where

F(x) = 4 {Pc(y =nT () = nTPe(x = pT(x)) + T () — x}and
h(y) = Ap{Pc(x = pT(x)) = PTPY =T OD + pTC) —¥h

1 x and y in H. We may now specify the norm |i-ll; on H x H by
(3.6)

for al

I Coy) l=lx i+l y I,V(x,y) € HXH.

We known that H x H is a Hilbert space in regard to the norm Illly.
First, G is a Lipschitz continuous mapping, as we shall demonstrate.
For this let (x1,¥1), (x2,¥2) € H X H. We have

I G(xyy1) = G(x2.¥2) h ==l (f (), h)) = (f(x2) RO2)) T
=l (f(xy) = F(x2) RO — h(B2)) I
=|| f(xp) — fGx) |+ 1RO — h(y2) I

=|| 2, {PcO1 — nT()) — nTPc(xy — pT(x1)) T () — %)~
A {(Pc(y2 — nT(2)) — nTPc(9(x2) —pT(x2)) +nT(2) ~ b
+l A {Pc(xy = PT(X1)) —pTPc(yy —nTO) * pT(x1) — Y1} ~
(Ap{Pc(x2 —pT(x2)) — pTPc(y2 — nT(2)) + pT(x) = ¥2D I

=2, Il P —1TO1)) — n(uF = TPc(¥1 ~ pT(x1)) +nT) —
A 0 L X LU AT + X2 b
+2, | PeCar — PT(X1)) —pTPc(yr — T )+ pT(x1) — N
Pe(x2 — pT(e)) + pTPc(y2 — nT(y2) — pT(xz) + 2 I

.
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Iy = va ) < 2400 + 208 + @*BA)(I X, — x,
Iy = v 1) = 2400 4+ PRI x, — x| +
Iy = 2 I} = 2401 + @f)*(
I (g = a5, 91 = yp) I},
whete 4 = max{4;,4;),@ = max{p,n}. Then G is Lipschitz
continuous onfi-ll;. Hence for each point (¥g, ¥p) € H X H, system
{1.5) has precisely one vontinuous solution (x(1), y(r)), defined on t €
[t ') with the initial conditions x(t,) = xy and y(ty) = Yo,

v, Il

Let [ty 1) be the maximum period of existence, Now, we prove that
[ = oo, Under the assumptions made ol T, the VIP (1.4) has unique
solution, x"y' €C, with x' =0y~ nTy*)),y: = Pe(x” —
pT(x%))

Let x and y be arbitrary element of Hilbert space H, Then, we have

0G0 y) =1 (FC, WD) =1 f ) IR 1= Af{Pe(y =
WT () = nTPe(x = pT(x)) + 0T (y) = 2} I+l Az {Pe(x =
pT(x)) = p(TP:(y = nT() + pT(x) = y} 1= Al Pely —
0Ty = x 4 I T(y) = TPe(x = pT(x)) I} + Ao{ll Pe(x —
prx)) =y I 4p Il T(x) = TP:(y = nT(y)) I}
<A 0 Pely = 7)) = x Il #Amf Il y = (Pe(x = pT(x))) 1| +4,
I Pe(x = pT(x)) =y Il +Apf
Il = (Pe(y = nT(y))) N
= (Ay + Aepft) I Pe(y = nT(y)) = x Il +(A; + Anft)
Il P(x = pT(x)) ~ y
S A+ QPPN Pely = nT(y)) = x ||+ Pp(x = pT(x)) =y}
S (A4 A0P){I Pely =nT(y)) = P (y » =nT'(y*)) Il +
WPy s =nT(ya))=x" I+l x* =x Il +
I Po(x = pT(x)) = Po(x* = pT(x°) | +
I Pe(x” = pT(x°)) =y U +hy —yll}
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v f oty ¥t
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pTix' )i k) (A s ADEH
y' vy -yt Rl

' DR R ¥* ¥}

g Ul -
SRS R RS L y 4
(f 2 0+ ¥
U}

(A ¢ Adfiyi 2 v afiyiit » I
(A ABfe v Pf

Wy i} =14+ Al 2 + Pl

Hp b (A ABHLY G v i Yy

(A v APy + ) ) ‘

Bix" 'l (4 APPILA Py (2. 7)

”\‘lll e,
I DECCE), yl1)) =l Glx, y) S by 4 b W (e y) 1 O 1
where, k, = (A + Abfiy(z + ®f) 1l x*, y") ;lﬂ, and ke, = (4 +
Adfi)(2 4 @ft) Taking the fractional integrat of (3.7), we get

N L ¢ —
191 D (), (1) 15 181k, + ko W (2 y) i) S i (8

g
ot K t « o 5 =

)"~ tdr + -I?;“-)-],“(z ~)® ) (e(ry y(eh) i dT

ky(t=14)* K t a-1 ;

fqii=ig) . 1 = ,y(t (38
Flatl) I'ia) f’n(" r I (x (), ¥(2)) h :

Using Lemma 2.4 & 2.7, we get

ey (t — tg)* k,
b @,y 15 {1 () y o) 1+ Fa 37} * Ty o

— )27 || (x(7), y(r)) I, d
ky(t=tg)® key(t=to)*) (o

< {1 (x(to), y (o)) 1 + S exp (47251 5.9)
Hence, from (3.9) , Consequently, the solution is bounded on [t,,,éo)‘
Therefore solution of generalize system of Wiener-Hopf dynamical
system (3.5) is bounded on interval [to, "), if I" is finite. So, As a
result, we say that I' = 0o, Hence system of generalized fractional
order Wiener-Hopf dynamical system (3.5) has exactly one
continuous solution, x(t), y(t) with x(ts) = xq and y(ty) = yg over
[to, I"]. This complete the proof,

CONCLUSION
For the conventional system of variational inequalities, we

have introduced and analysed the system of non-integer order
Wiener-Hopf dynamical systems. The projection approach is
devised and used to analyse these system of fractional
dynamical systems .connected to the system of variational
inequalities. Under certain acceptable conditions, we have
demonstrated that these fractional order Wiener-Hopf
dynamical systems have only one solution to a system of VIP.
Recurrent neural networks can be designed using the
described dynamical systems to address variational
inequalities and associated optimisation issues. Another
potential direction for future work is to observe the stability of
system of non-inter order Wiener-Hopf resolvent dynamical

system and its application.
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